RING CONTRACTION REACTIONS OF **2-0-METHANESULFONATES** OF **a-HYDROXY-γ-LACTONES** IN
AQUEOUS MEDIUM TO **OXETANE-2-CARBOXYLIC** ACIDS: A CONVENIENT SYNTHESIS OF **3'-0-METHYLOXETANOCIN** AND A FORMAL SYNTHESIS OF OXETANOCIN

Anil K. Saksena,' Ashit K. Ganguly. Viyyoor M. Girijavallabhan. Russell E. Pike, Yao-Tsung Chen and Mohindar S. Puar

Scherfng-Plough Research Institute, 60 Orange Street, Bloomfieid, N.J. 07003, U.S.A.

Abstract: Barton decarboxylative rearrangement¹⁵ of thiohydroxamic ester 17 directly provided the key oxetanosylthiopyridyl glycosides 18 which were successfully coupled to N-benzoyladenine. A two-step ring contraction of the tosylate 7 to the oxetane-2carboxamide 23 is described. Attempted ring contraction of the triflate 24 gave the unexpected products 25 and 26. A ring expansion reaction (e.g. $14a \rightarrow 21a$) was also observed.

Oxetanocin 1 , the first natural oxetanosyl-N-glycosie and its analogs show promising antiviral activities against HSV, humancytomegalovirus and HIV.^{1,2,} A number of elegant syntheses of 1 and other analogs have been reported.³⁻⁶ In a versatile approach, the 2-O-triflate-y-lactones 3 were ring contracted to oxetane-2-carboxylic esters 4 in the presence of anhydrous K_2CO_3 / methanol.⁶ After hydrolysis the resulting acids 4a were then subjected to Barton decaboxylative chlorination¹⁵ to provide unstable chlorooxetanes 5.^{6b,7} Thus, in a "low yield" synthesis of 1 (Ad = adenine), the chlorooxetane 5a was converted to protected 1 and its a-anomer. **6b** For the success of the transformations $3 \rightarrow 4$. anhydrous conditions were found to be essential. It was also shown that under these conditions, the corresponding 2- 0-mesylates provided virtually no oxetanes.6a,b *We now show that especially under aqueous hydrolytic conditions, ring*

The lactone substrates 6 - 11 and 24 were readily prepared from diacetone glucose according to published procedures.^{6b,8} In initial experiments, when the mesylate 6 and the tosylate 7 were treated with anhydrous K₂CO₃ in methanol over 24-36 hours, the oxetane-2-methylesters 12b were isolated in -30% and 10% yields respectively (anomer ratio ~1:1); the unchanged lactones being the major components in these reactions.^{9,10} This suggested that the poor leaving group ability of 0-mesylate and tosylate imposed an element of reversibility causing the intermediate oxy -anion to relactonize. In contrast, we found that treatment of the mesylates 6 and $8 - 11$ in methanol with aqueous sodium hydroxide readily provided ¹¹ the **oxetane-2-carboxylic** acids **12a (80%), ¹² 13a** (72%). 148 (56%) 158 (48%) and 16a (35%). The predominant isomers in these reactions were derived from inversion of configuration at C-2 (5:1 for 12a -14a and 3:2 for 15a and 16a). ^{13,14} These oxetane-2-carboxylic acids were fully characterized as their methyl esters $12b - 16b$.

The **carboxylic acid 12a** was converted in a one-pot sequence to the thiohydroxamic ester 17 which was subjected to photolytic decarboxylative rearrangement^{15,16} to provide thiipyrldyl glycosides 18a/b in 30% yield.¹⁷ Coupling of 18a/b with N-benzoyladenine (4 equiv.) in DMF, in the presence of bromine (4 equiv.) and 4A molecular sieves, ¹⁸ led to protected nucleoside (anomeric) mixture 19 in -60% yield. Removal of the N-benzoyl group (NaOMe, MeOH) provided easily separable¹⁹ anomers 20a, m.p. 107-110^o (H₁-a, d, J_{1'.2} 5.9 Hz) and 20b, m.p. 134-136^o (H₁- β , d, J_{1'.2} 6.96 Hz) in over 90% yield (20a:20b, 2:3). Both isomers were debenzylated (Pd black, EtOH, ~quant. yield) to provide 3'-Omethyl oxetanosin 2, **m.p. 203-205^o, [a]_D-14.3^o (CHCl₃), and its** l'-epimer 2a. ²⁰ This also constitutes a formal synthesis of oxetanocin 1 since the **oxetane-2-** methyicarboxylate 13b²¹ has been previously converted to 1.^{6b}

We found that **oxetane-2-carboxylic** acids 12a - 16a on either prolonged storage or in contact with added acids undergo a ring expansion reaction (e.g. 14a \rightarrow 21a; -30% yield).²² Such furanosyl-C-glycosides could also be detected Immediately after some of the ring contraction reactions described above 23 Ring expansion reactions of N-benzoyl oxetanocin diesters have been observed during transglycosidation **attempts.²⁴** Formation of 218 appears to be a unusual example of a ring expansion reaction accompanying debenzylation. We have not studied these ring contraction reactions in the presence of other protecting groups.

In a two-step variant of the above ring contraction reactions, the tosylate 7 upon treatment with benzylamine in THF at room tempsrature cleanly gave the acyclic benzylamide 22. Treatment of 22 with NaH in THF at room temperature (-2.5 hrs.) led to **oxetane-2-carboxamide** 23 in overall 90% yield from 7 (anomer ratio 5:1; 8 5.04, d, J₂, 3 6.6 Hz, H₂.B, major isomer; δ 4.64, \mathbf{d}, \mathbf{J}_2 3.6.0 Hz, \mathbf{H}_2 - α , minor isomer).

Reaction of the more reactive triflate 24 with benzylamine as above gave exclusively the a-aminobenzyl-y-lactone 25 rather than 23 - the ring contraction product.²⁵ Also, attempted ring contraction of 24 with K_2CO_3 in anhydrous methanol²⁶ dii not provide 12b but only the orthoesters 26a/b (-60% yield).²⁷ In view of ample precedents for ring contraction of closely related triflates. $6b$ these anamolous results are inexplicable at this time.

Perhaps an 'aziridine-aminal' species such as [I] might be involved in the formation of 25 although direct nucleophilic displacement of the triflate group by benzylamine is a more plausible explaination. We propose an 'epoxy-acetal' species $[III]$ as a possible intermediate in the formation of 26a/b. The tetrahedral intermediate $[I]$ may act as a common species for the well documented ring contraction reactions," as well as 26a/b via [I I I). To the best of our knowledge, formation of 26a/b from 24 is a novel orlhoester forming reaction under basic conditions.

We are currently evaluating the scope and limitations of the above ring contraction reactions as well as the unusual transformations, **14a** \rightarrow 218 and 24 \rightarrow **26a/b.**²⁸

Acknowledgements: We thank Sir Derek Barton. FRS, for stimulating discussions. We would also like to thank Dr. B. Pramanik and Mr. P. Banner for hllh resolution mass spectral data.

References and Notes:

- I. H. Nakamura. S. Hasegawa, N. Shimada, T. Takita and Y. litaka, *J. Antibiot.*, 1966, 39, 1629
- 2. H. Hoshino. N. **Shimizu.** N. **Shimada,** T. Takita and T. Takeuchi, *J. Ant&t..* **1987, <u>40,</u> 1077.**
- 3. S. **Niitsuma,** Y. Ichlkawa, K. Kato and T. Takita, *Tetrahedron Lett.*, 1987, 28, 4713; S. Nishiyama, S. Yamamura. K. Kato and T. Takita, *ibid.*, 1988, 29, 4739 and 4743.
- 4. D. W. **Norbeck** and J. B. Kramer, *J. Am. Chem. Soc.*, 1988, 110, 7217.
- 5. R. Humbalek and G. Just, *Tetrahedron Lett.*, 1990. **31.** 5445.
- 6. (a) G. N. Austin, G. W. J. Fleet, J. M. Peach, K. Prout and Jon C. Son, *Tetrahedron Lett.*, 1987, 28, 4741; (b) F. X. Wilson,
- G. W. J. Fleet, K. Vogt. Y. Wang, D. R. Wiiy, S. Choi, R. Storer, P. L. Meyers and C. J. Wallis, *ibid.*, **1990**, 31, 6931.
- 7. These **chlorooxetanes** 5 were so unstable that it was found necessary to first convert them to thiophenyl glywsides **5b** for purification; they were then regenerated back to chlorooxetanes for coupling with N- benzoyladenine just before use.6b The thiopyridylglycosides **18a/b** used here were stable to chromatography and to storage at -10° under argon for several months.
- 8. E.M. Acton, R. M. Goerner, H. S. Uh, K. J. Ryan, D. W. Henry, C. E. Cass and G. A. LaPage, J. Med. Chem., 1979, 22, 518.
- 9. Ail new compounds were characterized by hiih resolution mass spectra, ¹H and ¹³C NMR spectra. When necessary 2D (¹H-¹H) and 2D(¹H-¹³C) COSY NMR spectra were obtained. Elemental analyses were obtained for crystalline compounds only. Yields refer to isolated products and have not been optimised. Selective spectral data is given here.
- 10. 6: ¹H NMR [400 MHz, CDCl3] 82.95 (m, 1H), 3.25 (s, 3H), 3.35 (s, 3H), 3.55 (m, 3H), 3.75 (dd, J 10.8, 2.2 Hz. 1H), 4.55 (ABq J 12.1 HZ, 2H). 4.7(s, broad, lH), 5.88{d, J2,3 9Nz. lH), 7.2- 7.4 (m. 5H). 12b: ¹H NMR [CDCk] 84.9 (d, J_{2.3} 6.0 Hz, 2a-H); 5.14 (d, J_{2.}3 8.5 Hz, 2B-H). C₂-isomer ratio, ~1:1.
- 11. Typical procedure: A 10% methanolic solution of the mesylate was treated with aq. $\overline{1}$ N NaOH (3.5 equiv.) at R.T. After ~15 hrs. the reaction mixture was cooled (ii bath) and neutralized with 1 N HCI (3.5 equiv.). Evaporation of the **solvents in-vacua at 3%** 40°C followed by extraction of the residue with CH₂CI₂ provided the crude product which was chromatographed on silica gel; etuent: 12 - 25% acetone in n-hexane followed by 25% methanol in CH2C12. Both isomers could be separated in this manner aithough mixtures were used for Barton decarboxylative rearrangement.¹⁵
- 12. 12a: 1H MMR [CDClg] 83.3 (m, 1H), 3.38 (s, 3H), 3.5 (dd, J ll.5, 1.5 Hz, 1H), 3.58 (m, 2H), 3.8 (dd, J 11.5, 2.6 Hz, 1H), 4.7 (ABq, J 12 Hz. 2H). 4.87 (m, lH), 4.9 (d. J2,3 6.6 Hz, 2a-H, mlnor Ieomor), 7.3- 7.4 (m, 5H); S 3.3 **(s,** 3H), 3.4 (m, IH), 3.5 (m, 2H), 3.7 (m, 2H), 4.65 (ABq, J 12 Hz, 2H), 4.93 (m, 1H), 5.1 (d, J2.3 9 Hz. 2 β -H, major isomer), 7.3- 7.4 (m, 5H).
- 13. For ¹H coupling constants in oxetanes, see: A. Balsamo, C. Ceccarelli, P. Crotti and F. Macchia, J. Org. Chem., 1975, 40, 473.
- 14. In the formation Of minor retention products, the available evidence neither rules out interconversion of lactone sulfonate esters
- nor epimerization at some latter stage. More detailed studies would be necessry lo fully understand these results.
15. D. H. R. Barton, D. Crich and W. B. Motherwell, J. Chem. Soc., Chem. Commun., 1983, 939; Tetrahedron, 1
- D. Crich and T. J. Ritchie, J. Chem.Soc., Chem.Commun., 1988.1461; and cited references.
16. Thiohydroxamic ester 17 was prepared in situvia mixed antiyoride procedure by addition of isobutyrylchloroformate and N-methyl morpholine to a 10% solution oi **12a** in dry THF at -20 O. After 5 minutes activation period a solution of **N-hydroxy** pyridinethione and triethylamine in dry THF was added. After stirring for -30 minutes, the reaction was allowed to warm lo room temperature and irradiated with 150 watts *tungsten* lamp for -60 minutes. Work-up by extractive isolation with ethylacetate
provided the crude product, which was chromatographed on silica gel (eluent: 25% ethylacetate in
- 17. **16~~ 'H** NMR [CDCi3] 63.2 (m,lHO. 3.4 (s, 3Hf, 3.6 (dd, 2H), 3.75 (d, broad, 2H). 4.65 *(m.* 3H). 4.85 (m, **lH), 6.86 (d, J1.2 6.6 HZ. Hf-cr, minor** isomer). 7.0- 7.66 (m, BH), 8.45 (m. 1H); 18b: S 3.38 (s, 3H), 3.6-3.8 (m. 4H). 4.65 (m, 3H), 4.85 (m, IH), 6.88 **(d.** JI 2 **7.4** Hr. HI-& ma]or Isomer), 7.0-7.6 (m. 8H), 8.45 (m, 1H).
- 18. S. Hanessbn, *K.* Sato, T. J. Liak, N. Oanh and D. Dixit, J. Am. Chsm. Soc., 1984, 106, 6114; We cordially thank Professor 19. Silica gel chromatography (TLC grade), eluent: 1% methanol in ethylacetate , Hanessian for complete details of this procedure used originally for coupling **of a Ihlophenyl glycoside with N-benzoyladenine.**
- 20. **2: ¹HNMR [CD3OD]** *63.4* **(s, 3H), 3.66 fd, J 5.2, 2H), 3.76 (dd,** J 12.3 Hz, 1H), 3.9 (m, 2H), 4.68 (m. 1H), 6.5 (d, J_{1*,2}[,] 6.07, H₁⁻a, minor anomer), 8.2 (s, 1H) and 8.66 (s, 1H); 2a: δ 2.95 (s, 3H), 3.31-3.43 (m, 4H), 3.61 (m, 1H), 3.77 (dd, J 12.5, 3.8 Hz, **1H), 3.89 (dd, J 12.5, 2.9 Hz, 1H), 4.98 (m. 1H), 6.7 (d, J1.2 6.88 Hz, H₁-B, major anomer), 8.2 (s, 1H), 8.46 (s, 1H).**
- 21. 13b: 'H NMR [CDci3] **S3.5** (m, lH), **3.6 (dd, 2H), 3.67 (s, 3H), 3.69 (dd, 2H). 4.47 fdd, 3H). 4.65 (dd, 2H). 4.88 (m, 1 H), 6.14** (d, $J2,38.8$ Hz, $H2 - \beta$, major Isomer), 7.2-7.4 (m, 10H); minor isomer: δ 4.92 (d, $J2,36.8$ Hz, $H2 - \alpha$).
- 22. **14b: '**H NMR [CDCl3] δ 1.1, (d. 3H), 3.4 (m, 1H), 3.64 (dd, 2H), 3.8 (s,3H), 4.45- 4.7 (m. 3H). 5.11 (d, J_{2.3} 6.9 Hz, H₂-β), **7.2- 7.4** (m, 5H); signals at 8 1.3 (d. 3H). 2.94 *(m,* lH). **3.7 (s. 3H) and 4.65 (d, J2,3 6.0 Hz, Hp-a) indicating the presence of** -20% retention product (by integration). 2lb: 'H NMR[CDCf3] 8 1.22 (d, 1.22 (d. J 7 Hz, 3H), 2.22 (m. broad, lH), 2.29 *(m, 1H).* **3.76 (s, 3H), 3.92 (dd, J 10, 1 HZ, lH),**

4.12(dd,JlO. lH),4.15(d, J lOHz, lH)and4,28(dd,4,4Hz, 1H).

- 23. These observations appear to be related Io some recent examples of tetrahydrofuran cyclizations with concomitant debenzylations, see: H. Dahmlow. J. Muizer, C. Seitz, A. Ft. Strecker and A. Kohlmann, *Tetrahedron Lett.* 1992, 33, 3607.
- 24. **K.** Kato. T. Minami. T. Takita. S. Nishiyama. S. Yamamura and H. Naganawa, Tetrahedron *Lert,* **1989, a, 2269; K. Kate,** T, Minami, T. Takita, S. Nishiyama, T. Ohgia, S. Yamamura, *J. Chem. Soc., Chem. Commun.,* 1989, **1037.**
- 25. **25: 13C NMR [CDCI3] 6 176.8 (s), 139.8 (s), 137.8 (s), 126.5 (d), 128.3 (d), 127.9 (d), 127.8 (d), 127.2 (d), 127.1 (d), 76.8 d. c4), 73.7 (1). 70.6 (t), 70.1 (I)* 53.1 (I) and 44.3 (d. C3); 1H NMR [COCl3] 6 2.47 (m, lH), 3.26 (s. 3H), 3.41 (dd, 125** Hz, 1H) 3.43(dd,J11,2Hr, tH),3.50(d,JlO,H2),3.6(dd.J11,4Hr, lH),3.77(dd.J 11,2Hz, 1H),3&l(d,J12, lH),4.0(d,J12, IH), 4.55 (d, J 11 HZ, lH), 4.58 (d. J 11 HZ, IH). This data also ruled **out the** ring contracted oxetane-amide structure 23.
- 26. TO a 10% solution of the triflate 24 **in dry methanol was added K2CO3 (anhydrous; 6 equiv.) in one portion.** The reaction mixture was stirred at room temperature for 30 minutes and filtered to remove solids. Evaporation of the fittrate *in-vacuo* and
preparative TLC on silica gel (eluent: 40% ethylacetate in n-hexane) provided 26a and 26b as
- 27. 24: ¹HNMR **[CDCi3]** 62.95 (m, 1H), 3.35 (s, **3H)**, 3.54 (m, 3H). 3.75 (d, 1H), 4.55 (dd, 2H). 4.67 (s, broad, 1H), 5.78 (d, J_{2.3} 8.8 Hz, lH), 7.2- 7.4 (m, 5H).

26a: 13 C NMR (CDCl3) δ 138.2 (s), 128.3 (d), 127.6 (d), 127.5 (d), 120.8 (s, C₁), 79.1 (d, C₄), 73.2 (t), 72.5 (d, C₂), 69.7 (t), 59.0 (q), 50.9 (q), 49.3 (q), and 44.0 (d, C3); 26b: δ 137.8 (s), 128.4 (d), 127.7 (d), 119.3 (s. C1), 77.8 (d, C4), 73.9 (d, C2). 73.5 (t), 72.4 (t), 71.8 (t), 58.9 (q), 50.0 (q), 49.5 (q) and 48.4 (d, C3); Stereochemistry at C2 in 26a: δ H3 2.45, δ C3 44.0 (OH function is cis to H_3) end in 26b: δH_2 2.30, δC_3 48.4 (OH function is *trans* to H_3) IR [neat, isomers 26a and 26bJ: no **carbonyl absorption.**

28. **A. K. S. would** like to dedicate this contribution to **his mentor, Dr. R. H. 5. Gall.**