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Ab8tract:  Barton decarboxylative rearrangeme@  of thiohydroxamic ester 17 directly provided the key oxetanosyl-
thfopyrfdyl  glycosides 18 which were successfully coupled to N-benzoyladenine. A two-step ring contraction of the
tosylate 7 to the oxetane-2carboxamide 23 is described. Attempted ring contraction of the triflate 24 gave the
unexpected products 25 and 26. A ring expansion reaction (e.g. 14a --f  21a) was also observed.

Oxetanocin 1 , the first natural oxetanosyl-N-glycosie and its analogs show promising antiviral activities against HSV,

humancytomegalovirus and HIV.1,2. A number of elegant syntheses of 1 and other analogs have been reported.3-6  In a

versatile approach, the 2-O-triflate-y-lactones  3 were ring contracted to oxetane-2-carboxylic esters 4 in the presence of

anhydrous K2CO3/  methanol.6  After hydrolysis the resulting acids 4a were then subjected to Barton decaboxylative

chlorination15 to provide unstable chlorooxetanes 5.6b*7 Thus, in a “low yield” synthesis of 1 (Ad = adenine), the

chlorooxetane 5a was converted to protected 1 and its a-anomer. 6b For the success of the transformations 3 + 4,

anhydrous conditions were found to be essential. It was also shown that under these conditions, the corresponding 2-

0-mesylates provided virtually no oxetanes.6a,b We now show that especially under aqueous hydrolytic conditions, ring

contraction of such 2-0-mesylates  is an efficient process culminating in an opportune synthesis of 2 and its anomer 2a.
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1 R=H; 2R=Me IX = mostly H; Y = Subs. alkyls,  heteroatoms etc.]
5aX=H,Y=Cl+CBn,Z=CI
5b X = H, Y = CH&lBn,  Z = SPh

The lactone substrates 6 - 11 and 24 were readily prepared from diacetone glucose according to published

procedures.sbs In initial experiments, when the mesylate 6 and the tosylate 7 were treated with anhydrous K2CO3  in

methanol over 24-36 hours, the oxetane-2-methylesters 12b were isolated in -30% and 10% yields respectively

(anomer ratio -1:l); the unchanged lactones being the major components in these reactions.g*10  This suggested that

the poor leaving group ability of 0-mesylate and tosylate imposed an element of reversibility causing the intermediate

oxy-anion to relactonize. In contrast, we found that treatment of the mesylates 6 and 8 - 11 in methanol with aqueous

sodium hydroxide readily provided l1 the oxetane-2-carboxylic acids 128 (80%),12 13a (72%). 148 (56%) 158 (48%)

and 16a (35%). The predominant isomers in these reactions were derived from inversion of configuration at C-2 (51 for

128 -14a and 3:2 for 15a and 16a). 13s14  These oxetane-2-carboxylic acids were fully characterized as their methyl

esters 12b - 16b.
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The carboxyllc acfd  128 was converted in a one-pot sequence to the thlhydroxamic ester 17 which was subjected to

photolytic decarboxylatlve rearrangementt5,ts to provide thiipyrldyl glycosides 16a5 in 30% yield.” Coupling of Ma/b

with N-benzoyladenlne (4 equiv.)  in DMF, in the presence of bromine (4 equiv.) and 4A molecular sieves.18 led to

protected nucleoslde (anomeric) mixture 19 in -60% yield. Removal of the N-benzoyl  group (NaOMe, MeOH)  provided

easily separable’9 anomers 209, m.p. 107-1104  (HI-a,d,  Jt*,2  5.9 Hz) and Mb, m.p. 134-1360  (Ht$  d, Jtm.2~  6.96 HZ)

in over 90% yield (2gUOb,  2:3). Both isomers were debenzylated (Pd black, EtOH,  -quant. yield) to provide 3-O-

methyl oxetanosin 2, m.p. 203-205O,  [ a 10-14.3~  (CHCl3),  and its l’-epimer 2a. 2o This also constitutes a formal

synthesis of oxetanocin 1 since the oxetane-2-  methyicarboxylate 13b21 has been previously converted to 1.6h

We found that oxetaneP-carboxylll  acids 12a - 16a on either prolonged storage or in contact with added acids undergo

a ring expansion reaction (e.g. 14a + 218; -30% yield).22 Such furanosyl-C-glycosides could also be detected

Immediately after some of the ring contraction reactions described above.23 Ring expansion reactions of N-benzoyl

oxetanocin diesters have been observed during transglycosidation attempts.*4 Formation of 218 appears to be a

unusual example of a ring expansion reaction accompanying debenzylation. We have not studied these ring contraction

reactions in the presence of other protecting groups.

In a two-step variant of the above ring contraction reactions, the tosylate 7 upon treatment with benzylamine in THF at

room tempsrature cleanly gave the acyclic benzylamide 22. Treatment of 22 with NaH  in THF at room temperature

(-2.5 hrs.) led to oxetane-2carboxamide  23 in overall 90% yield from 7 (anomer ratio 5:l; 6 5.04, d, J2.3 6.6 Hz, H2_5,

major isomer; 5 4.64, d. J2.3  6.0 Hz, H2-a,  minor isomer).

Reaction of the more reactive triflate 24 with benzylamine as above gave exclusively the a-aminobenzyl-y-lactone 25

rather than 23 - the ring contraction product.25 Also, attempted ring contraction of 24 with K2CO3 in anhydrous

methanol*6 dii not provide 12b but only the orthoesters 26a/b (-60% yield). 27 In view of ample precedents for ring

contraction of closely related triflates,6b these anamolous results are inexplicable at this time.

Perhaps an ‘aziridine-aminal’ species such as [I] might be involved in the formation of 25 although direct nucleophilic

displacement of the triflate group by benzylamine is a more plausible explaination. We propose an ‘epoxy-acetal’

species [III] as a possible intermediate in the formation of 26alb. The tetrahedral intermediate [I I) may act as a

common species for the well documented ring contraction reactions,” as well as 26a/b via [I I I). To the best of our

knowledge, formation of 2Sa/b  from 24 is a novel orlhoester forming reaction under basic conditions.

We are currently evaluating the scope and limitations of the above ring contraction reactions as well as the unusual

transformations, 14a + 218 and 24 + 26a/b.28
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